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ABSTRACT

The synchrosqueezing is a powerful tool to analyse and repre-
sent multicomponent signals in the time-frequency plane, but
the method does not provide a complete and accurate mode
decomposition. This paper investigates the modes synthesis
issue for a multicomponent signal from selected coefficients
of its wavelet transform. We first discuss the reconstruction
method proposed by Brevdo et al. to find the wavelet coeffi-
cients of a mode and propose an alternative which appears to
be more stable. We then remark that the classical synthesis
formula from selected wavelet coefficients is not mathemat-
ically sound, therefore we propose a new one based on the
projection of the coefficients onto some reproducing kernel
space. Numerical experiments show the efficiency of our ap-
proach for a large range of applications.

Index Terms— Analytic Wavelet Transform, Empirical
Mode Decomposition, Synchrosqueezing, Intrinsic Mode
Functions

1. INTRODUCTION

In the last two decades, many methods based on the wavelet
transform, the short-time Fourier transform [1, 2, 3, 4], or the
so-called Empirical Mode Decomposition (EMD) [5, 6], have
been proposed to analyse narrowband signals. While the first
kind of methods are mathematically sound and allow a better
and more robust separation [7], the EMD-based strategies are
fully adaptive, and can handle non-harmonic waves (e.g. tri-
angular signals). Recently, Daubechies et al. showed interest-
ing results on what they called “Synchrosqueezing” to repre-
sent ideal multicomponent signals, namely signals which are
the sum of frequency and amplitude modulated waves [8, 9].
Even if this method gives an accurate time-frequency repre-
sentation, the associated technique for mode reconstruction
appears to be seriously flawed when signals contaminated by
noise or containing interferences are considered.

After briefly recalling the synchrosqueezing method, we
discuss the issue of the identification of relevant wavelet coef-
ficients for mode synthesis. We propose a new technique
based on the projection onto some reproducing kernel space

prior to reconstruction, whose good behaviour is illustrated
by numerical experiments.

2. DEFINITIONS AND NOTATIONS

2.1. Wavelet Transform

In the following, we denote by L1(R) and L2(R) the space of
real integrable and square-integrable functions respectively,
and by S(R) the Schwartz class. χX stands for the charac-
teristic function of the set X , z̄ is the complex conjugate of
z, and we denote by f(a ·) the function x 7→ f(ax). Given a
signal s ∈ L1(R), we define its Fourier transform as:

ŝ(ξ) =
∫

R
s(t) e−2iπξt dt. (1)

Taking an admissible wavelet ψ ∈ S(R) (such that CΨ =∫∞
0
|ψ̂(ξ)|2
ξ dξ < ∞) and letting ψa,b(t) = 1

aψ
(
t−b
a

)
, we

define the continuous wavelet transform of the signal s by:

Ws(a, b) = 〈s, ψa,b〉

=
1
a

∫
R
s(t)ψ

(
t− b
a

)
dt. (2)

The wavelet transform maps L2(R) onto the space WL2 ⊂
L2(R+ × R). Note that this normalisation is not the usual
one, but allows for a better analysis of multicomponent sig-
nals, as any monochromatic wave has the same wavelet trans-
form magnitude, whatever its frequency centre. We are par-
ticularly interested in analytic wavelets ψ which live in the
Hardy space H(R) (that is Supp(ψ̂) ∈ [0,∞[), because of
the following property.

Proposition 2.1. If ψ ∈ S(R) is an analytic admissible
wavelet, then the wavelet transform Ws of a real signal s
is the half of the wavelet transform of its analytic signal
sa = s + iH(s), where H stands for the Hilbert transform
(see [10] for example).

The classical synthesis formula then writes:

sa(t) =
1
Cψ

∫ ∞
0

∫
R
Ws(a, b)ψ

(
t− b
a

)
db
da

a2
. (3)



and we also recall the Morlet formula (obtained by taking a
Dirac for synthesis, see [10] for instance):

sa(t) =
1
C ′ψ

∫ ∞
0

Ws(a, t)
da

a
, (4)

where C ′ψ =
∫∞

0
ψ̂(ξ)dξξ . The real signal is easily obtained

by s = 1
2Re(sa).

2.2. Mother wavelets

In what follows, we will use mother wavelets having a unique
peak frequency. For such a wavelet ψ, let us denote by ξψ its
frequency centre:

ξψ = arg max
ξ

|ψ̂(ξ)|. (5)

For a compactly-supported analytic wavelet ψ, we will de-
note by ∆ψ the minimum quantity such that ψ̂ is com-
pactly supported on [ξψ − ∆ψ, ξψ + ∆ψ]. A typical ex-
ample is the Bump wavelet defined in the Fourier domain

by ψ̂Bump(ξ) = e
1− 1

1−( ξ−µσ )2

χ[µ−σ,µ+σ], which admits the
peak frequency ξψ = µ and the width ∆ψ = σ. Other ana-
lytic mother wavelets include the complex Shannon wavelet
(which is badly time-localised and does not belong to S(R)),
the complex Meyer wavelet, the Bessel wavelet, or the com-
plex Morlet wavelet (which is strictly speaking neither an-
alytic nor admissible, but numerically suitable), we refer to
[3, 11] for more details.

3. SYNCHROSQUEEZING IN A NUTSHELL

3.1. A reassignment method

Let us denote by Intrinsic Mode Function (IMF), or simply
mode, any signal of the form h(t) = A(t) cos(2πφ(t)), with
A(t) > 0, φ′(t) > 0 and where functions |A′| and |φ′′| are
small compared to φ′. The wavelet transform of such an IMF
is a ridge centred around the scale a(b) = ξψ/φ

′(b), whose
width is proportional to the bandwidth of ψa = ψ(·/a). By
linearity of the transform, for a multicomponent signal of the
form s(t) =

∑
k Ak(t) cos(2πφk(t)), the following approxi-

mation holds ([3]):

Ws(a, b) =
1
2

∑
k

Ak(b)e2iπφk(b)ψ̂(aφ′k(b))+O(|A′k|, |φ′k(k)|).

(6)
Provided the IMFs are sufficiently well separated (i.e. |φ′k(t)−
φ′l(t)| is large enough for each k 6= l and t), each ridge can be
identified and computed. The idea of the Synchrosqueezing,
originally introduced in [2], is to automatically reassign the
wavelet transform according to the candidate instantaneous
frequency defined by:

ω(a, b) =
1

2iπ
∂bWs(a, b)
Ws(a, b)

, (7)

by computing

Ts(ξ, b) =
∫
{a s.t. ω(a,b)=ξ and |Ws(a,b)|>γ}

W (a, b)
da

a
.

(8)
The motivation for computing ω(a, b) is that it gives an
interesting frequency information near the ridges: for a
well-separated multicomponent signal, if (a, b) satisfies
1 − ∆ψ ≤ aφ′k(b) ≤ 1 + ∆ψ , then ω(a, b) ≈ φ′k(b) [8].
Imposing some regularity assumptions on the phase and am-
plitude of the studied multicomponent signals, Daubechies et
al. showed in [8] that the Synchrosqueezing is able to detect
and extract each mode with good accuracy.

3.2. Extraction of ridges and reconstruction

The modulus of the synchrosqueezed transform |Ts| corre-
sponds to a concentrated time-frequency analysis of the sig-
nal, and this representation can be sufficient for some appli-
cations. But in many cases, we need quantitative measures
for each modes, namely the instantaneous frequencies φ′k(t).
To this end, one can introduce a variational approach to ex-
tract one “ridge” from Ts by finding the curve with the largest
energy subject to some penalisation term. An appropriate en-
ergy of a curve c(t) in the synchrosqueezing plane was found
to be [9]:

Es(c) =
∫

log |Ts(c(t), t)| dt, (9)

while to measure the regularity of c, authors in [9] chose the
norm ‖c′‖2:

J(c) =
∫
|c′(t)|2 dt. (10)

The ridges are then extracted successively by minimising

E(c) = J(c)− λEs(c), (11)

the parameter λ monitoring the trade-off between the two
terms. Note that the whole approach works conversely to
the EMD: knowing the time-frequency representation, one
extracts the instantaneous frequencies and finally computes
the modes. On the contrary, the EMD computes directly the
modes to get the so-called Hilbert-Huang spectrum. Note also
that only an approximation of the solution is computed, using
a greedy algorithm as in [9]. Improving the formulation and
the algorithm for the ridge computation should be the topic of
a future work.

Once the curve c(t) is known, one needs to compute the
associate mode h. For that, authors in [8] propose to sum
up the Synchrosqueezed transform near that curve: at time t,
defining the set Xt = {a s.t. ω(a, t) ≈ c(t)}, they propose
the following:

h(t) =
∫
{ξ≈c(t)}

Ts(ξ, t) dξ =
∫
Xt

Ws(a, t)
da

a
. (12)
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Fig. 1. (a) : The truncated wavelet transform W of the sum
of 2 cosines. (b) : The wavelet transform of the pseudo-mode
obtained by applying equation (4) on W . (c) and (d): The
pseudo-mode, and a zoom on the singularities.

In fact, this is the Morlet formula (4) where one only selects
the wavelet coefficients in the set Xt. There are however se-
rious flaws with this method:

• If some measures of the candidate frequency ω(a, t) are
irrelevant, which is the case for noisy or interfering sig-
nals, the synthesis formula becomes unstable.

• Formally, denoting by X the set
⋃
tXt, one computes

the truncated wavelet transform W = WsχX , and then
inverses it using the Morlet formula. But W is not the
wavelet transform of a signal (i.e. it does not belong to
the space WL2).

• Even if the set X is “narrow”, there is no reason for the
reconstructed mode to be narrowband. Figure 1 illus-
trates this drawback: we select a fine smooth band of
the wavelet transform of a simple 2-wave signal which
we truncate as shown in Figure 1 (a), then we recon-
struct a pseudo-mode using equation (4), and finally
display the corresponding wavelet transform. Figures
1 (b) and (c) show clearly that the result is not nar-
rowband, while Figure 1 (d) shows small singularities
which appeared during the reconstruction process.

To summarise, the original extraction and reconstruction
method can work for an ideal multicomponent signal, but as
soon as the modes are not strictly speaking IMFs, or if the sig-
nal is contaminated by noise, or if the sets Xt have not been
perfectly identified, the reconstruction becomes unstable.

4. THE RECONSTRUCTION ISSUE

4.1. Selecting a ridge near the frequency peak

Here we still suppose that the curve c(t) is known. Instead
of using ω again to reconstruct the mode, one can select the

coefficients of the wavelet transform in a band in the vicin-
ity of the ridge, with the appropriate width. This amounts to
defining the set of coefficients

Yt =
{
a s.t.

ξψ −∆ψ

c(t)
≤ a ≤ ξψ + ∆ψ

c(t)

}
, (13)

and then to reconstructing the mode by applying equation
(4) on WsχY , with Y =

⋃
t Yt. One verifies easily that

the width of this strip is about the bandwidth of the function
ψa = ψ(a ·). Figure 2 shows the interest of using this set of
coefficients Y instead of the set X and formula (12). Figures
2 (a) and (b) display the wavelet transform of a multicompo-
nent strongly modulated signal and its synchrosqueezed trans-
form. The coefficients sets X and Y are then displayed on
Figures 2 (c) and (d) for each mode, which suggests that the
three modes have been correctly identified. One notices that
Y looks smoother thanX , and that it has a constant width. Fi-
nally, the second modes synthesised from WsχX and WsχY
are displayed on Figures 2 (e) and (f) respectively, showing
that the set Y leads to much better results. Let us add that for
a noisy signal, reconstructing the modes with equation (12)
would be worse, whereas our reconstruction method remains
stable, provided the curve c has been correctly computed. To
show this, we display on Figure 3 the signal-to-noise ratio
(SNR) after denoising for different noise levels, for the same
second mode.

4.2. Projection onto WL2

The image WL2 of L2(R) by the continuous wavelet trans-
form is a Reproducing Kernel Hilbert Space (RKHS), i.e.
each element Ws ∈WL2 satisfies [10]:

Ws(a, b) =
1
Cψ

∫ ∞
0

∫
R
Ka,b(a′, b′)Ws(a′, b′) db′

da′

a′
,

(14)
where the function Ka,b is called the reproducing kernel
and is defined by Ka,b(a′, b′) = 〈ψa,b, ψa′,b′〉. Using the
Plancherel theorem one can rewrite this kernel in the fre-

Fig. 3. Extraction of the low-frequency mode of the multi-
component test-signal. The SNR after denoising is displayed
for different SNRs. We compare the methods based on the set
X (solid line) and the one based on the set Y (dashed line).
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Fig. 2. (a) : Wavelet transform of a multicomponent signal. (b) : Synchrosqueezed transform. (c) and (d) : Sets of coefficients
X and Y respectively. Each grey level corresponds to the coefficients selected for reconstructing one mode. The coefficients
of the second IMF are in black. (e) and (f) : Corresponding reconstructed second mode (solid line) and the desired one (dashed
line).

quency domain, which is often more convenient:

Kab(a′, b′) =
〈
ψ̂a,b, ψ̂a′,b′

〉
(15)

=
∫ ∞

0

ψ̂(aξ)ψ̂(a′ξ)e2iπξ(b−b′) dξ.

Now, given any W ∈ L2(R+ × R), we can define a unique
projection PW ∈WL2:

PW (a, b) =
1
Cψ

∫ ∞
0

∫
R
Ka,b(a′, b′)W (a′, b′) db′

da′

a′
.

(16)
Our method for mode reconstruction is then straightforward:
once the coefficient set Y has been identified, one computes
W = WsχY , and then its projection PW . One then uses
the synthesis formula (4) on PW to get the mode. Figure
4 illustrates the benefit of using such a projection on the test
signal of Figure 2 contaminated by white Gaussian noise such
that the SNR equals 2dB. We artificially construct a modified
curve c for the second mode, which simulates what happens
in practice when the signal contains noise (see Figure 4 (b)).
Then, Figures 4 (c) and (d) show the truncated wavelet trans-
form W = WsχY for the second mode, and its projection
PW . The corresponding reconstructed modes are displayed
on Figures 4 (e) and (f) respectively, together with the ex-
pected mode. One can see how the projection regularises the
solution by suppressing the discontinuities. This projection
has a major role when reconstructing a mode, and suggests
a lot of working perspectives. For instance, the IMFs of any
signal s could be characterised in the time-scale plane by the
coefficient set Y , so that the RKHS projection P (WsχY ) is
sufficiently narrow and regular.

4.3. Implementation

The implementation of the continuous wavelet transform and
the synchrosqueezing is made as in [9]: the scale parameter
a is discretized into nv values per octave. In all our tests,
we took nv = 32, and we used the Morlet complex wavelet
defined by:

ψ̂(ξ) =
1√
σ
e−π

(ξ−ξψ)2

σ , (17)

with σ = 0.1 and ξψ = 1. As ψ̂ has not a compact sup-
port, we set ∆ψ = 2σ so that ψ̂ is negligible outside [ξψ −
∆ψ, ξψ + ∆ψ]. The synchrosqueezing threshold γ (see [8])
is set to 0.01, while we choose λ = 100 for the ridge ex-
traction (see section 3.2). Note that concerning the computa-
tion of the curve c, the minimisation of the energy E given
by equation (11) is carried out by means of the following
greedy algorithm: for a time index k, one defines c(k) =
arg maxa |Ws(a, k)| and minimises the energy at time indices
k + 1, k + 2, · · · assuming it has been minimised for all pre-
vious time indices (forward computation). One then uses a
backward step to compute k − 1, k − 2, · · · in the same way,
and one finally keeps the best result among different initial-
isations. The Matlab code of all algorithms and the scripts
used to create the figures of this paper can be downloaded
from [12].

5. CONCLUSION

This paper discussed the issue of the IMF reconstruction from
the Synchrosqueezing transform, or more generally from a
“strip” of the wavelet transform. We proposed an alternative
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Fig. 4. (a) : Wavelet transform of a noisy multicomponent signal. (b) : Mask of the wavelet transform computed from the set Y
of equation (13). The black area represents coefficients of mode 2. (c) and (d) : Selected coefficients for the reconstruction of
the second mode, without and with projection onto WL2, respectively. (e) and (f) : Corresponding reconstructed second mode
(solid line) and the desired one (dashed line), zoom around a singularity.

method for modes reconstruction which appears to be more
stable than the original formulation. We also introduced a
projection method for modes reconstruction from truncated
wavelet transforms, which is mathematically grounded and
exhibits a better behaviour than the original method. The
variational formulation for the ridge extraction as well as its
implementation remain a key point, which should be further
investigated.
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